
Joshua Shagam
New Mexico State University

Department of Computer Science 

Dynamic Spatial Partitioning for
 Real-Time Visibility 

Determination



Complex 3D environments have large 
numbers of objects
Computer hardware can only render a finite 
number at any given speed
Need to determine which ones will be visible
Simple/intuitive approaches are extremely 
slow

Problem





Prior work
Dynamic AABB Tree Structure - 
definition, maintenance, usage
Heuristic comparison
Real-world performance
Conclusions

Outline



Heavily-studied [Cohen-Or et al., 2000]
Hundreds of algorithms
Dozens of approaches
Only a few in practical use
Those in use are very limited

Visibility Determination



Most visibility approaches use spatial 
partitioning
Divide (partition) environment into cells 
(regions) in organized manner
Many partitioning algorithms (most are 
static or limited in update ability)

Spatial Partitioning



Binary Space Partition (BSP)
K-D Tree/Quadtree/Octree
Axis-Aligned Bounding Box (AABB) Tree
Oriented Bounding Box (OBB) Tree
Bounding Sphere Tree

Partitioning Approaches



Group objects based on relative position
Grouping determined by heuristic
Several heuristics available

Recursively divide groups
Group-level visibility determination

Dynamic AABB Tree



Axis-Aligned Bounding Box (AABB)
Defined by two corner points
Sides are parallel to coordinate axes

0 or more child nodes
0 or more objects
Split point - avg of all objects’ centers

Data Structure Definition



Node’s AABB must encompass
objects
child nodes

No other constraints

Constraints



Initial Build



Object Management



View-Volume Culling
Hierarchical group



Occlusion
(Spatial coherence)



Occlusion
(Temporal + spatial coherence)



Fragmentation Avoidance

Moving/adding objects may cause tree 
imbalance
When AABBs are recomputed, recompute 
split points w/ approximation
New split point applies “pressure” to 
heuristic; stochastic rebalancing





Determine how objects are distributed
Goals:

Maximize tree balance
Minimize tree depth
Minimize number of visibility tests

Nesting Heuristics



Two variants of each
Leafy - all objects stored in leaf nodes
Non-leafy - larger objects stored in 
internal modes

Each named after a tree concept (not a 
strict implementation of the tree type)

Nesting Heuristics



K-D



Ternary



Octree



Icoseptree



Timings

Generate large number of random objects
Distribute throughout region

Variety of distributions
Consistent overall density

Record avg. time for region query, object 
movement



Uniform



Clustered



Sphere



Lissajous



Video clip (1:03)

Realtime render, 1.1GHz Athlon, Radeon 9700 
using temporal coherence occluders only



Objects 
Considered

Objects 
Rendered

Frames per 
Second

Brute-
Force 1736 302 21

AABB 
Visibility 554 302 30

AABB 
Occlusion 554 302(95) 26

Comparisons
Scene: tunnel2 - 0.4M polgyons



Objects 
Considered

Objects 
Rendered

Frames per 
Second

Brute-
Force 1346 489 17

AABB 
Visibility 772 489 23

AABB 
Occlusion 568 101(100) 35

Comparisons
Scene: stress - 4.8M polygons



Objects 
Considered

Objects 
Rendered

Frames per 
Second

Brute-
Force 1761 528 23

AABB 
Visibility 928 528 24

AABB 
Occlusion 862 182(182) 33

Scene: stress5 - 6.3M polygons
Comparisons



Objects 
Considered

Objects 
Rendered

Frames per 
Second

Brute-
Force 7702 927 5.3

AABB 
Visibility 1535 927 6.4

AABB 
Occlusion 1339 185(166) 15.9

Scene: room3 - 23.5M polygons
Comparisons



Conclusions

D-AABB trees provide fast queries and 
updates on fully-dynamic environments
Works w/ simple occlusion culling; 
accurate visibility w/o precomputation
Icoseptree heuristic scales best of those 
tested



Take advantage of hardware occlusion 
tests (on the latest hardware)
Explore additional heuristics

Future Work



Dr. Joseph Pfeiffer, Jr.
NMSU Computer Science Department
GAANN fellowship program
White Sands Missile Range TRAC group

Acknowledgments



Questions
email: joshagam@cs.nmsu.edu

http://www.cs.nmsu.edu/~joshagam/Solace/


